New GFC Columns for Low Baseline Noise MALS Analysis

Toru Matsu, Melissa Turcotte, Ronald Benson

1. Showa Denko America, Inc., 420 Lexington Avenue, Suite 2335A, New York, NY 10170, USA
2. Showa Denko K.K., 5-1 Ohkimachi Kawasaki-ku, Kawasaki, 210-0867, Japan

Abstract

Multi-angle light scattering (MALSS) detection has become an indispensable tool for polymer characterization. The coupling of MALSS with high-performance size exclusion chromatography has provided a unique and attractive technique for obtaining absolute molecular weight information and molecular size information about macromolecular systems including both natural and synthetic materials.

Currently, Showex has SB-800 HQ series for the analysis of water-soluble molecules and for the determination of molecular weight distribution. Further improvement of the column has been desired for the advanced analysis coupled with MALSS for superior base-line noise performance.

Showex has successfully developed the LB-800 columns which are suitable with MALSS detection. The columns are well suited to provide signal at low concentration with low molecular weight standards.

Introduction of new LB columns

- Improved polymer
- Decrease in particle shedding

LB base material is polyhydroxymethacrylate

Features of MALSS

- Determines absolute molar mass and conformation of macromolecules
- Measurements are made without reference to molar mass standards, column calibration, or molecular conformation

Example:

Poly(diallyl dimethyl ammonium chloride) Elutes with SEC mode

Principle of Measurement

Laser

Scattering intensity is proportional to molecular weight, concentration and specific refractive index (dn/dc)

Difficulty of Low Molecular Weight Analysis

- Particle shedding causes noise
- Signal of low molecular weight is small.
- Current Showex SB-806M (lower) is possible to detect but the baseline noise interferes with accurate measurement.

Improvement of baseline noise is required to find sample signal peak.

Comparison of Signal to Noise Ratio (S/N ratio)

- Achieves analysis from low molecular weight to macromolecular weight.

Conclusion

- We have demonstrated the Showex LB-803 HQ with MALSS detection has very low baseline noise. Low molecular weight polymers that are usually problematic for MALSS detection can be separated with good S/N ratios.
- We have demonstrated the Showex LB-806M HQ with MALSS detection has very low baseline noise. Due to the linear calibration curve it is possible to analyze a large range of molecular weight polymers.

Introduction of new LB columns

- Improved polymer
- Decrease in particle shedding

LB base material is polyhydroxymethacrylate

Features of MALSS

- Determines absolute molar mass and conformation of macromolecules
- Measurements are made without reference to molar mass standards, column calibration, or molecular conformation

Example:

Poly(diallyl dimethyl ammonium chloride) Elutes with SEC mode

Principle of Measurement

Laser

Scattering intensity is proportional to molecular weight, concentration and specific refractive index (dn/dc)

Difficulty of Low Molecular Weight Analysis

- Particle shedding causes noise
- Signal of low molecular weight is small.
- Current Showex SB-806M (lower) is possible to detect but the baseline noise interferes with accurate measurement.

Improvement of baseline noise is required to find sample signal peak.

Comparison of Signal to Noise Ratio (S/N ratio)

- Achieves analysis from low molecular weight to macromolecular weight.

Conclusion

- We have demonstrated the Showex LB-803 HQ with MALSS detection has very low baseline noise. Low molecular weight polymers that are usually problematic for MALSS detection can be separated with good S/N ratios.
- We have demonstrated the Showex LB-806M HQ with MALSS detection has very low baseline noise. Due to the linear calibration curve it is possible to analyze a large range of molecular weight polymers.